222
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Kathuria, H., Giri, J., Tyagi, H., & Tyagi, A. K., (2007). Advances in transgenic rice
biotechnology. Crit. Rev. Plant Sci., 26, 65–103.
Khan, S. A., Li, M. Z., Wang, S. M., & Yin, H. J., (2019). Revisiting the role of plant
transcription factors in the battle against abiotic stress. Int. J. Mol. Sci., 19, 1634.
Khoshmanzar, E., Aliasgharzad, N., Neyshabouri, M. R., Khoshru, B., Arzanlou, M., &
Asgari, L. B., (2020). Effects of Trichoderma isolates on tomato growth and inducing its
tolerance to water-deficit stress. Int. J. Environ. Sci. Technol., 17, 869–878.
Kim, C. Y., Vo, K. T. X., Nguyen, C. D., Jeong, D. H., Lee, S. K., Kumar, M., Kim, S. R., et
al., (2016). Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant
Biotechnol. Rep., 10, 13–23.
Kimotho, N., Baillo, E. H., & Zhang, Z., (2019). Transcription factors involved in abiotic
stress responses in maize (Zea mays L.) and their roles in enhanced productivity in the post
genomics era. Peer J., 30, e7211.
Kishor, P. B. K., Hong, Z., Miao, G. H., Hu, C. A. A., & Verma, D. P. S., (1995). Overexpression
of delta 1- pyrroline-5carboxylate synthetase increases proline production and confers
osmotolerance in transgenic plants. Plant Physiol., 108, 1387–1394.
Kitsios, G., & Doonan, J. H., (2011). Cyclin dependent protein kinases and stress responses in
plants. Plant Signal. Behav., 6, 204–209.
Krasensky, J., Broyart, C., Rabanal, F. A., & Jonak, C., (2014). The redox-sensitive chloroplast
trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance. Antioxid Redox
Signal, 21, 1289–1304.
Kreuzwieser, J., & Rennenberg, H., (2014). Molecular and physiological responses of trees to
waterlogging stress. Plant Cell Environ., 37, 2245–2259.
Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., Parniske, M., et al.,
(2018). Advances and current challenges in calcium signaling. New Phytol., 218, 414–431.
Kumar, S. G., Reddy, A. M., & Sudhakar, C., (2003). NaCl effects on proline metabolism in
two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance.
Plant Sci., 165, 1245–1251.
Kumar, S. V., Sharma, M. L., & Rajam, M. V., (2006). Polyamine biosynthetic pathway as
a novel target for potential applications in plant biotechnology. Physiol. Mol. Biol. Plant.,
12, 13–28.
Kumar, V., Shriram, V., Kavi, K. P. B., Jawali, N., & Shitole, M. G., (2010). Enhanced
proline accumulation and salt stress tolerance of transgenic indica rice by overexpressing
P5CSF129A gene. Plant Biotechnol. Rep., 4, 37–48.
Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F., (2018). Heat and drought stresses in crops
and approaches for their mitigation. Front. Chem., 6, 26.
Landi, S., Hausman, J. F., Guerriero, G., & Esposito, S., (2017). Poaceae vs. abiotic stress:
Focus on drought and salt stress, recent insights and perspectives. Front. Plant Sci., 8, 1214.
Langridge, P., Paltridge, N., & Fincher, G., (2006). Functional genomics of abiotic stress
tolerance in cereals. Briefings Funct. Genom. Proteom., 4, 343–354.
Le Hir, R., Castelain, M., Chakraborti, D., Moritz, T., Dinant, S., & Bellini, C., (2017).
AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and
drought stress tolerance in Arabidopsis thaliana. Physiol. Plant., 160, 312–327.
Lee, H. G., & Seo, P. J., (2015). The MYB96-HHP module integrates cold and abscisic acid
signaling to activate the CBF-COR pathway in Arabidopsis. Plant J., 82, 962–977.
Lee, S. B., & Suh, M. C., (2015). Cuticular wax biosynthesis is up-regulated by the MYB94
transcription factor in Arabidopsis. Plant Cell Physiol., 56, 48–60.